文章摘要
不确定性下新能源消纳资源智能调控研究
Research on Intelligent Regulation of New Energy Consumption Resources under Uncertainty
投稿时间:2025-11-25  修订日期:2025-11-25
DOI:
中文关键词: 新能源消纳  智能调控  蒙特卡洛模拟  Copula理论  优化运行
英文关键词: New energy accommodation  intelligent regulation and control  Monte Carlo simulation  Copula theory  optimized operation
基金项目:国网河北省电力有限公司公司科技项目
作者单位邮编
吕云彤* 国网河北省电力有限公司营销服务中心 050000
陶 鹏 国网河北省电力有限公司营销服务中心 
冀 明 国网河北省电力有限公司营销服务中心 
王志涛 国网河北省电力有限公司营销服务中心 
霍 伟 国网河北省电力有限公司营销服务中心 
王新健 东南大学电气工程学院 
高赐威 东南大学电气工程学院 
摘要点击次数: 16
全文下载次数: 0
中文摘要:
      本文针对高比例新能源接入电力系统带来的消纳挑战,提出了一种不确定性环境下新能源消纳资源智能调控方法。首先,基于蒙特卡洛模拟和Copula理论构建了风-光出力联合概率分布模型,实现了新能源不确定性的精确量化。其次,建立了储能系统、电动汽车集群等多元可调资源的精细化数学模型,分析了其运行特性和可调度潜力。在此基础上,设计了一种包含日前随机规划、日内滚动优化和实时反馈校正的三层优化调控架构:上层采用两阶段随机规划制定日前调度计划,中层基于模型预测控制进行日内滚动修正,下层通过分布式反馈实现实时功率平衡。仿真结果表明,所提策略显著提升了系统新能源消纳能力,其中风电消纳率达到96.8%,光伏消纳率达到94.2%,相比传统调度策略分别提升14.5和17.7个百分点;同时有效降低了系统运行成本,总运行成本较传统策略降低8.5%。研究验证了所提方法在提升新能源消纳率、改善系统运行经济性和增强调度灵活性方面的有效性,为高比例新能源电力系统的优化运行提供了理论依据和技术支撑。
英文摘要:
      This paper addresses the accommodation challenges brought by the high proportion of new energy integration into power systems and proposes an intelligent regulation method for new energy accommodation resources under uncertainty. Firstly, a joint probability distribution model of wind and photovoltaic power output is constructed based on Monte Carlo simulation and Copula theory, achieving precise quantification of new energy uncertainty. Secondly, a refined mathematical model of multiple adjustable resources such as energy storage systems and electric vehicle clusters is established, analyzing their operational characteristics and dispatchable potential. On this basis, a three-layer optimization regulation architecture is designed, including day-ahead stochastic programming, intraday rolling optimization, and real-time feedback correction: the upper layer uses two-stage stochastic programming to formulate the day-ahead dispatch plan, the middle layer conducts intraday rolling correction based on model predictive control, and the lower layer achieves real-time power balance through distributed feed-back. Simulation results show that the proposed strategy significantly improves the system""s new energy accommodation capacity, with wind power accommodation reaching 96.8% and photovoltaic power accommodation reaching 94.2%, increasing by 14.5 and 17.7 percentage points respectively compared to traditional dispatch strategies; at the same time, it effectively reduces system operation costs, with total operation costs reduced by 8.5% compared to traditional strategies. The research verifies the effectiveness of the pro-posed method in enhancing new energy accommodation rates, improving system operational economy, and increasing dis-patch flexibility, providing theoretical basis and technical support for the optimal operation of high-proportion new energy power systems.
View Fulltext   查看/发表评论  下载PDF阅读器
关闭