文章摘要
勇 晔,薛溟枫,毛晓波.基于多元时序解耦多模态学习的农业负荷预测模型[J].电力需求侧管理,2025,27(5):23-29
基于多元时序解耦多模态学习的农业负荷预测模型
Agricultural load forecasting model based on multivariate temporal decoupling and multimodal learning
投稿时间:2025-05-11  修订日期:2025-07-09
DOI:10. 3969 / j. issn. 1009-1831. 2025. 05. 004
中文关键词: 农业负荷  深度学习  多元变分模态分解  时间卷积神经网络  双向门控循环单元
英文关键词: agricultural load  deep learning  multivariate variational mode decomposition  temporal convolutional network  bidirectional gated recurrent unit
基金项目:国家电网有限公司科技项目(5400-202318246A-1-1-ZN)
作者单位
勇 晔 国网江苏省电力有限公司 无锡供电分公司江苏 无锡 214125 
薛溟枫 国网江苏省电力有限公司 无锡供电分公司江苏 无锡 214125 
毛晓波 国网江苏省电力有限公司 无锡供电分公司江苏 无锡 214125 
摘要点击次数: 235
全文下载次数: 67
中文摘要:
      针对农业负荷受气象因素影响大,单一分解方法无法充分提取多元输入间存在的多维特征的问题,提出了一种基于多元变分模态分解结合SVR-Bi-GRU-TCN组合模型的农业负荷预测模型。首先利用多元变分模态分解对历史农业负荷及气象特征进行自适应分解,实时挖掘数据间不同特征尺度的模态分量,然后针对各模态分量的固有属性,分别建立SVR、Bi-GRU、TCN模型以提取不同时间尺度的特征信息,进而实现对未来1 h农业负荷精准预测。实验结果表明,与SVR模型、Bi-GRU模型、TCN模型、LSTM模型及CNN-Bi-LSTM模型相比,所提出的预测模型能有效提升预测精度。
英文摘要:
      As the agricultural load is greatly affected by meteorological factors and a single decomposition method cannot fully extract the multidimensional features existing between multiple inputs, an agricultural load forecasting model based on multivariate variational mode decomposition combined with SVR Bi GRU TCN combined model is proposed. Firstly, using multivariate variational mode decomposition to adaptively decompose historical agricultural loads and meteorological characteristics, real-time mining of modal components with different feature scales between data is carried out. Then, based on the inherent properties of each modal component, SVR, Bi-GRU, and TCN models are established to extract feature information at different time scales, thereby achieving accurate prediction of future 1-hour agricultural loads. The experimental results show that compared with the SVR model, Bi-GRU model, and TCN model, LSTM model and CNN-BiLSTM model, the proposed prediction model can effectively improve the prediction accuracy.
查看全文   查看/发表评论  下载PDF阅读器
关闭