文章摘要
基于大数据驱动的省间电力现货市场购售双侧报价行为特征分析
Analysis of Quotation Behavior Characteristics of Both Buyers and Sellers in Inter-Provincial Electricity Spot Markets Driven by Big Data
投稿时间:2025-04-11  修订日期:2025-04-22
DOI:
中文关键词: 省间电力现货市场  新能源消纳  大数据分析  K-Means算法  报价行为分类
英文关键词: Inter-provincial electricity spot market  renewable energy consumption  big data analysis  K-Means algorithm  quotation behavior classification
基金项目:国家电网有限公司科技项目“基于大数据驱动的省间电力现货市场申报限价影响分析研究” (5108-202355444A-3-2-ZN)
作者单位邮编
李灏翀 东南大学网络空间安全学院 211189
宁龙飞 东南大学电气工程学院 
王德林 国家电力调度控制中心 
胡晨旭 中国电力科学研究院有限公司 
王蓓蓓* 东南大学电气工程学院 210096
摘要点击次数: 10
全文下载次数: 0
中文摘要:
      我国能源资源禀赋与需求分布的空间错配叠加清洁能源快速发展,导致弃风、弃光、弃水问题突出,亟需通过电力市场化改革优化资源配置。省间电力现货市场通过“统一市场、两级运作”体系促进新能源大范围消纳与电力余缺互济。然而,当前市场申报限价机制不完善,静态限价难以平衡购售双侧动态与“保供稳价”目标,发电厂和购电侧报价行为分析及多类型市场主体特征挖掘不足。本研究基于2022年省间现货市场试运行数据,结合大数据驱动方法,系统分析火电、水电、风电、光电等资源及对端省份购电侧的报价特征与出清结果,揭示其时段性与季节性行为规律。进一步采用K-Means算法对多类型机组报价行为进行分类,提取持续时间、报量与报价的关键差异,以辅助分析不同类型机组及对端省份购电报价行为的影响因素。
英文摘要:
      The spatial mismatch between China's energy resource endowment and demand, coupled with the rapid development of clean energy, has led to prominent issues of wind, solar, and hydropower curtailment, necessitating power market reforms to optimize resource allocation. The inter-provincial power spot market promotes large-scale renewable energy integration and power surplus-deficit balancing through a "unified market, two-level operation" system. However, the current market price cap mechanism is imperfect, with static price limits struggling to balance the dynamic needs of both supply and demand sides and the goals of ensuring supply and stabilizing prices. Analysis of bidding behaviors of power plants and electricity purchasers, as well as feature extraction for diverse market participants, remains insufficient. Based on trial operation data from the 2022 inter-provincial spot market, this study employs a big data-driven approach to systematically analyze the bidding characteristics and clearing outcomes of thermal power, hydropower, wind power, solar power, and electricity purchasers in counterpart provinces, revealing their temporal and seasonal behavioral patterns. Furthermore, the K-Means algorithm is applied to classify the bidding behaviors of different unit types, extracting key differences in duration, bid volume, and bid price to facilitate the analysis of influencing factors on the bidding behaviors of various unit types and electricity purchasers in counterpart provinces.
View Fulltext   查看/发表评论  下载PDF阅读器
关闭