张 霞,刘宝龙,何湘英,王恭玥,刘晓捷.基于并行混合神经网络的95598工单情感分析[J].电力需求侧管理,2025,27(1):94-100 |
基于并行混合神经网络的95598工单情感分析 |
Sentiment analysis of 95598 work orders based on parallel hybrid neural networks |
投稿时间:2024-10-14 修订日期:2024-11-15 |
DOI:10. 3969 / j. issn. 1009-1831. 2025. 01. 015 |
中文关键词: 95598工单 情感分析 文本卷积神经网络 长短期记忆网络 注意力机制 |
英文关键词: 95598 work order emotional analysis text convolutional neural network long short-term memory network attention mechanism |
基金项目:国网常州供电公司科技项目(CZ2024017) |
|
摘要点击次数: 0 |
全文下载次数: 0 |
中文摘要: |
为了解决95598对紧急工单处理不及时导致严重后果的问题,提出了基于注意力机制的并行混合神经网络电力工单文本情感分析模型,以满足紧急工单自动化智能提醒的要求。首先通过情感词典和规则集的方式辅助人工标注工单文本情感紧急程度生成了电力工单文本情感分析数据集;利用文本预训练BERT模型进行文本向量化;然后使用文本卷积神经网络(text convolutionneural network,TextCNN)和双向长短期记忆网络(bidirectional long short term memory,BiLSTM)分别提取文本局部特征和上下文特征并进行特征融合;利用注意力机制对融合后的文本特征中的关键信息进行加强处理,以增强模型识别关键信息的能力。算例结果表明,融合了注意力机制的神经网络模型与其他深度学习模型相比,对电力工单文本情感分类有着更好的效果。 |
英文摘要: |
In order to solve the problem of serious consequences caused by untimely processing of 95598 emergency work orders, a parallel hybrid neural network sentiment analysis model for power work order texts based on attention mechanism is proposed to meet the requirements of automatic intelligent reminders for emergency work orders. Firstly, a sentiment analysis dataset for electric power work order texts is generated by manually annotating the emotional urgency of work order texts through sentiment dictionaries and rule sets;Using text pre trained BERT model for text vectorization;Then, use text convolutional neural network(TextCNN)and bidirectional long short term memory(BiLSTM)to extract local and contextual features of the text, respectively, and perform feature fusion;Using attention mechanism to enhance the ability of the model to recognize key information in the fused text features. The calculation results show that the neural net?work model that integrates attention mechanism has better performance in sentiment classification of power work order texts compared toother deep learning models. |
查看全文
查看/发表评论 下载PDF阅读器 |
关闭 |
|
|
|