张程珂,刘会灯,朱渝宁,贾 凡,郭恒青,张金良.基于多特征分析提取的随机森林超短期光伏功率预测[J].电力需求侧管理,2023,25(6):50-56 |
基于多特征分析提取的随机森林超短期光伏功率预测 |
Ultra-short-term photovoltaic power prediction for random forests based on multiple feature analysis and extraction |
投稿时间:2023-05-05 修订日期:2023-07-23 |
DOI:10. 3969 / j. issn. 1009-1831. 2023. 06. 008 |
中文关键词: 光伏发电 功率预测 超短期负荷预测 随机森林 特征值分析 |
英文关键词: photovoltaic power generation output prediction ultra-short-term load prediction random forest eigenvalue analysis |
基金项目:国家自然科学基金项目(71774054) |
|
摘要点击次数: 486 |
全文下载次数: 204 |
中文摘要: |
随着新能源的大规模利用,光伏渗透率稳步增长,准确的光伏功率预测能为电网企业带来较多效益。基于此提出了一种多特征分析提取的随机森林预测模型,用于超短期光伏功率预测。首先,对收集到的光伏数据进行预处理,清理缺失值和重复值;再次,对影响因素进行相关性分析,选取相关性强的因子;然后,对筛选后的因子进行输入特征量选择,将处理后的特征向量作为预测模型的输入;最后,建立随机森林预测模型,并与BP、RBF、MLP模型对比。实证结果表明,所提模型具有较好的拟合度和更高的预测精度,对光伏预测工作有一定的指导意义。 |
英文摘要: |
PV penetration is steadily increasing with the large-scale utilization of new energy sources. Accurate PV power prediction can bring more benefits to grid enterprises. Based on this, a random forest prediction model with multi-feature analysis extraction is proposed for ultra-short- term PV power prediction.Firstly, the collected PV data is pre-processed to clean up the missing and duplicate values. Then, correlation analysis is performed on the influencing factors and factors with strong correlation are selected. Next, feature engineering is performed on the screened factors and the processed feature vector is used as input of the prediction model. Finally, the random forest prediction model is built and compared with BP, RBF and MLP models. Empirical results show that the model proposed has better fit and higher prediction accuracy, which is of certain guidance for PV prediction work. |
查看全文
查看/发表评论 下载PDF阅读器 |
关闭 |
|
|
|