孙志翔,丁 彬,孙晓燕.基于迁移学习和GRU网络的新建小区负荷预测[J].电力需求侧管理,2022,24(1):55-62 |
基于迁移学习和GRU网络的新建小区负荷预测 |
New community load prediction based on transfer learning and GRU network |
投稿时间:2021-10-11 修订日期:2021-11-18 |
DOI:10. 3969 / j. issn. 1009-1831. 2022. 01. 010 |
中文关键词: 中长期负荷预测 门控循环单元网络 迁移学习 极端梯度增强算法回归 |
英文关键词: medium and long term load forecasting GRU network transfer learning XGBoost regression |
基金项目:国家电网有限公司科技项目(B710D0208XLI) |
|
摘要点击次数: 1368 |
全文下载次数: 471 |
中文摘要: |
针对新建小区没有任何历史负荷数据的难点,提出了基于相似小区特征进行数据迁移的门控循环单元负荷预测算法,实现对新建小区负荷的预测。首先,利用迁移学习的思想迁移出与新建小区特征高度相似的数据信息,及预测模型参数;其次,利用特征数据集作为训练集完成极端梯度增强算法回归模型的训练;然后,采用门控循环单元神经网络对训练样本集进行建模,当模型达到预测精度时,从而完成蕴含时序关系的新建设小区的中长期负荷预测。最后,以连云港某小区为例,得到了该小区在2020年1月—2022年11月时间段内的负荷预测结果,以验证所建立的蕴含时序关系的中长期负荷预测模型的有效性。 |
英文摘要: |
any historical load data, a gated recurrent unitIn view of the difficulty of new community without(GRU)load predictionalgorithm based on data transfer of similar community characteristicsis proposed to realize the load prediction of new community. Firstly,the idea of transfer learning is used to transfer the data informationwhich is highly similar to the features of the new community and predict the model parameters;Secondly, the feature data set is used asthe training set to complete the training of extreme gradient boosting(XGBoost)regression model;Then, GRU neural network is used tomodel the training sample set. When the prediction accuracy of themodel is reached, the medium and long term load prediction of thenew community with time series relationship is completed. Finally,taking a community in Lianyungang as an example, the load prediction results of the residential area form January 2020 to November2022 are obtained, so as to verify the validity of the established medium and long term load prediction model with time series relationship. |
查看全文
查看/发表评论 下载PDF阅读器 |
关闭 |