文章摘要
付文杰,李 化,杨伯青,宋 杰.基于集合卡尔曼滤波与相空间重构的负荷预测方法研究[J].电力需求侧管理,2022,24(1):49-54
基于集合卡尔曼滤波与相空间重构的负荷预测方法研究
Research of load forecasting method based on ensemble Kalman filter and phase-space reconstruction
投稿时间:2021-10-11  修订日期:2021-11-18
DOI:10. 3969 / j. issn. 1009-1831. 2022. 01. 009
中文关键词: 集合卡尔曼滤波  相空间重构  负荷预测  数据同化
英文关键词: ensemble Kalman filter  phase-space reconstruction  load forecasting  data assimilation
基金项目:国家重点研发计划基金资助项目(2016YFB0901100)
作者单位
付文杰 国网河北省电力有限公司 保定市供电分公司河北 保定 071000 
李 化 国电南瑞南京控制系统有限公司南京 211100 
杨伯青 国网河北省电力有限公司 保定市供电分公司河北 保定 071000 
宋 杰 国电南瑞南京控制系统有限公司南京 211100 
摘要点击次数: 1366
全文下载次数: 435
中文摘要:
      提出一种基于集合卡尔曼滤波和相空间重构的组合模型来优化预测结果。对于负荷数据时间序列,首先使用延迟坐标嵌入方法对其进行相空间重构。基于局部平均法对下一时刻的负荷状态进行预测,其中最临近向量的数目采用循环迭代的方式选取,以获得对不同负荷序列的自适应性。根据无迹变换理论,对负荷预测值选取合适数量的Sigma点组成集合并使用集合卡尔曼滤波器进行数据同化,从而能够在容忍采样噪声的同时给出负荷的最优估计。以非侵入式量测方式获取河北保定市50个家庭用户的负荷数据作为训练集进行试验,给出了电热水器和空调负荷以及家庭总负荷的预测结果和误差分析。结果显示,与单纯基于相空间重构的预测结果进行比较,该组合模型具有更好的预测性能,且对分项电器负荷和家庭总负荷均具有较好的适应性。
英文摘要:
      A load forecasting technique based on a combinedmodel formed by ensemble Kalman filter(EnKF)and phase -spacereconstruction(PSR)is proposed to optimize forecasting results.For the load data time-series, phase-space reconstruction is firstlyimplemented using delayed coordinate embedding. Future loadstates can be predicted by local averaging. To achieve adaptive feature to different load time - series, cyclic iterative calculation isused to select the number of nearest vectors. According to unscented transformation theory, ensemble is formed by appropriate number of Sigma points of the predicted load value and data assimilation can be realized using ensemble Kalman filter. Therefore, optimum estimation can be obtained while measurement noise exists.Using non-instrusive measurement, forecasting results and erroranalysis for loads of electrical water heater and air -conditioner aswell as total household are done by adopting 50 end users datafrom Baoding of Hebei province as training data set. The resultsshow that, compared to those derived from pure phase-space reconstruction forecasting, the proposed method features have better-forecasting performance and good adaption both for individual appliance load and total household load.
查看全文   查看/发表评论  下载PDF阅读器
关闭