文章摘要
傅质馨,温顺洁,朱俊澎,袁 越.基于残差卷积神经网络的温度敏感负荷辨识方法研究[J].电力需求侧管理,2021,23(5):57-62
基于残差卷积神经网络的温度敏感负荷辨识方法研究
Research on temperature⁃sensitive load identification method based on residual convolutional neural network
投稿时间:2021-05-21  修订日期:2021-07-08
DOI:10. 3969 / j. issn. 1009-1831. 2021. 05. 012
中文关键词: 负荷特性  基准负荷比较法  相关性分析  动态负 荷特征库  负荷辨识
英文关键词: load characteristics  benchmark load comparison  correlation analysis  dynamic load feature library  load identification
基金项目:国家自然科学基金青年科学基金资助项目 (51807051);江苏省自然科学基金青年科学基金资助项目 (BK20180507)
作者单位
傅质馨 河海大学 能源与电气学院南京 211100河海大学 可再生能源发电技术教育部工 程研究中心南京 210098 
温顺洁 河海大学 能源与电气学院南京 211100 
朱俊澎 河海大学 能源与电气学院南京 211100河海大学 可再生能源发电技术教育部工 程研究中心南京 210098 
袁 越 河海大学 能源与电气学院南京 211100河海大学 可再生能源发电技术教育部工 程研究中心南京 210098 
摘要点击次数: 1412
全文下载次数: 617
中文摘要:
      地区电网负荷特性易受环境温度影响,导致负荷辨 识结果往往存在较大偏差,研究了基于残差卷积神经网络的 温度敏感负荷辨识方法,有效提高负荷辨识准确率。首先,利 用基准负荷比较法,构建了商业各企业基准日负荷曲线;其 次,利用皮尔逊相关系数法,筛选出与温度相关性强的温度敏 感负荷,同时采用多项式回归模型进一步分析温度敏感负荷 与实时温度变化的规律,量化温度因素的影响程度;最后,针 对温度敏感负荷,提出利用负荷与温度的多项式回归模型系 数构建动态温度敏感负荷特征库,作为辨识模型的输入。将 基于残差卷积神经网络的负荷辨识结果与传统卷积神经网络 负荷辨识结果进行对比,前者的辨识准确率有较大提升。
英文摘要:
      The load characteristics of regional power grids are easily affected by the environmental temperature, which often results in large deviations in the load identification results. The temperature-sensitive load identification method based on residual convolutional neural network is studied to effectively improve the accuracy of load identification. Firstly, the benchmark load comparison method is used to construct the benchmark daily load curve of commercial enterprises. Secondly, the Pearson correlation coefficient method is used to screen out temperature-sensitive loads with strong temperature correlation, and a polynomial regression model is used to further analyze the temperature -sensitive load and the law of real-time temperature changes quantifies the degree of influence of temperature factors. Finally, for temperature - sensitive loads, a polynomial regression model coefficient of load and temperature is used to construct a dynamic temperature-sensitive load feature library as the input of the identification model. Comparing the load identification results based on the residual convolutional neural network with the traditional convolutional neural network load identification results, the identification accuracy of the former is greatly improved.
查看全文   查看/发表评论  下载PDF阅读器
关闭