张雪纯,高广玲,张智晟,杨连河.基于需求响应的建筑楼宇综合能源系统优化调度[J].电力需求侧管理,2019,21(4):28-34 |
基于需求响应的建筑楼宇综合能源系统优化调度 |
Optimal scheduling of building integrated energy system based on demand response |
投稿时间:2019-05-06 修订日期:2019-06-20 |
DOI:10.3969/j.issn.1009-1831.2019.04.008 |
中文关键词: 建筑级综合能源系统 需求响应 优化调度 云模型粒子群算法 负荷峰谷差 |
英文关键词: building integrated energy system demand response optimized scheduling cloud model particle swarm optimization load peak⁃to⁃valley difference |
基金项目:国家自然科学基金项目(51477078) |
|
摘要点击次数: 2265 |
全文下载次数: 1193 |
中文摘要: |
针对能耗高且增速快的建筑楼宇优化调度问题,构建了含光伏发电、冷热电联供系统、燃气锅炉和储能装置的建筑级综合能源系统。在对系统内各个能源设备进行建模分析的基础上,考虑需求响应补偿价,以建筑运行成本最低为目标函数,建立了基于需求响应的建筑级综合能源系统优化调度模型,采用基于云模型改进的粒子群算法对模型优化求解。引入算例进行仿真,对比是否参与需求响应的两种不同模式,以及云模型粒子群算法与基本粒子群算法的优化性能。结果表明,基于需求响应的云模型粒子群算法模式可有效节约建筑级综合能源系统运行成本,同时降低电网侧负荷峰谷差。 |
英文摘要: |
Aiming at the problem of optimal scheduling of buildings with high energy consumption and fast growth rate, a integrated energy system in buildings including photovoltaic power generation, cogeneration system, gas boiler and energy storage device is constructed. Modeling and analyzing various energy devices in the system, considering the demand response compensation price,taking the lowest building operating cost as the objective function, optimization scheduling model of integrated energy system in buildings based on demand response is established. The particle swarm optimization algorithm based on cloud model is used to solve the model optimization. A simulation is introduced to simulate. The two different modes of participation in demand response,and optimization performance of cloud model particle swarm optimization algorithm and basic particle swarm optimization algorithm are compared. The results show that the cloud model particle swarm optimization algorithm model based on demand response can effectively save the operating cost of the integrated energy system in buildings, and reduce the peak-to-valley difference of grid side load. |
查看全文
查看/发表评论 下载PDF阅读器 |
关闭 |