文章摘要
杨斌,陈振宇,阮文骏,陆子刚,黄奇峰.基于多种群协同进化遗传算法的智能小区需求响应调度策略[J].电力需求侧管理,2019,21(2):10-14
基于多种群协同进化遗传算法的智能小区需求响应调度策略
Demand response dispatching strategy for intelligent community based on multi⁃group co⁃evolution genetic algorithm
投稿时间:2018-09-30  修订日期:2019-01-14
DOI:10.3969/j.issn.1009-1831.2019.02.003
中文关键词: 智能小区  电动汽车  储能系统  优化调度
英文关键词: intelligent community  electric vehicle  energy storage system  optimized dispatching
基金项目:国家电网公司科技项目(SGJS0000YXJS701014)
作者单位
杨斌 国网江苏省电力有限公司南京210024 
陈振宇 国网江苏省电力有限公司南京210024 
阮文骏 国网江苏省电力有限公司南京210024 
陆子刚 国网江苏省电力有限公司电力科学研究院南京210019 
黄奇峰 国网江苏省电力有限公司电力科学研究院南京210019 
摘要点击次数: 1973
全文下载次数: 1090
中文摘要:
      针对包含多种用能资源的智能小区中需求响应调度问题,首先建立储能、光伏和电动汽车的优化模型,目标函数设置为系统和电网的交换电量和总运行费用最小。然后利用多种群协同进化遗传算法优化结果。最后,以某智能小区为例,利用MATLAB工具对负荷模型进行仿真分析,验证所建模型的正确性和可行性,结果表明所设计的策略提高了光伏消纳率,降低了小区的运行费用。
英文摘要:
      For the demand response scheduling problems in an intelligent community containing multiple energy resources, the optimal model is firstly established concerning energy storage, photovoltaic and electric vehicles. The objective function is the minimum exchange quantity and total operation cost between the system and the grid. Then the multi?group collaborative purification genetic algorithm is used to obtain the optimization result. Finally,taking a smart community as an example, MATLAB tool is used to simulate the load model and verify its correctness and feasibility. It shows that the proposed strategy improves the PV consumption rate and reduces the operating cost.
查看全文   查看/发表评论  下载PDF阅读器
关闭