文章摘要
蒯圣宇,田佳,台德群,王加庆,韩天轮.计及分布式能源与电动汽车接入的空间负荷预测[J].电力需求侧管理,2019,21(1):47-51
计及分布式能源与电动汽车接入的空间负荷预测
Space load forecasting considering distributed energy and electric vehicles
投稿时间:2018-09-28  修订日期:2018-10-13
DOI:10.3969/j.issn.1009-1831.2019.01.011
中文关键词: 负荷预测  电动汽车  分布式电源  LS⁃SVM修正模型
英文关键词: load forecasting  electric vehicle  distributed power  LS⁃SVM correction model
基金项目:国家自然科学基金项目(51207050);国家电网公司科技项目(SGAHJY00GHJS1700156)
作者单位
蒯圣宇 国网安徽省电力有限公司合肥230022 
田佳 国网安徽省电力有限公司合肥230022 
台德群 国网芜湖无为县供电公司安徽无为238300 
王加庆 国网安徽省电力有限公司合肥230022 
韩天轮 华北电力大学北京102206 
摘要点击次数: 7911
全文下载次数: 947
中文摘要:
      相较于传统负荷预测,空间负荷预测更加关注某一局部空间内的负荷分布情况,因而可以更好地确定电气设备的选型与空间布局。分布式能源及电动汽车的飞速发展,使城市空间负荷分布变得更为复杂,采用原有基于时间序列的负荷预测方法可能带来较大误差,不利于城市规划的经济性与可靠性。利用最小二乘支持向量机(least squares support vector machine,LS?SVM)的非线性映射能力,建立了计及分布式能源与电动汽车充电负荷的空间负荷预测模型,并通过我国中部某地区的实际算例验证了所提方法的有效性。
英文摘要:
      Compared with the traditional load forecasting,the spatial load forecasting pays more attention to the load distribution in a certain space, so it can better determine the selection and spatial layout of the electrical equipment. The rapid development of distributed energy and electric vehicles makes the urban spatial load distribution more complex. The original load forecasting method based on time series may bring large error, which is not conducive to the economy and reliability of urban power grid planning.Due to the nonlinear mapping ability of least squares support vector machine, a spatial load forecasting model for distributed and electric vehicle charging load is established. Finally, a practical example in a certain area of central China shows the effectiveness of the proposed method.
查看全文   查看/发表评论  下载PDF阅读器
关闭